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ABSTRACT

Three specific failure criteria for the transversely isotropic fiber composite case will be
discussed.  All three use the polynomial expansion method.  The three criteria are the Tsai-Wu
criterion, the Hashin criterion and the Christensen criterion.  All three criteria will be given in
forms that admit direct and easy comparison, which has not usually been done.  The central
differences between these three criteria will be discussed, and steps will be taken toward the
evaluation of them.

Background

That the field of composite material failure characterization is somewhat controversial should
not be too surprising, considering the status of failure criteria development for the much
simpler case isotropic materials.  The two most common criteria for isotropic materials are the
Mises and the Tresca forms, but these only apply to very ductile, isotropic metals. Both the
Mises and Tresca criteria give yield levels in uniaxial tension and compression as being the
same and both are independent of a superimposed mean normal stress, pressure.  Neither of
these ideal characteristics are found to occur with composites or even for many or most
isotropic materials.  In the case of non-ideal, isotropic materials there has been recent
progress, Christensen [1], so too for anisotropic materials much has been done and there may
be a reasonable expectation for further progress.  The approach to be followed here is to
employ a generalized method, applicable to any material class and then begin to specialize the
symmetry class until we reach the form applicable to a fiber-matrix combination representative
of behavior of an aligned fiber system at the lamina level or equivalent scale.  The general
approach is known as the polynomial formalism

Polynomial Expansion, No Symmetry

Polynomials provide the basis for many representational forms in mathematics.  Interest here
is in characterizing failure through the stress tensor, so tensor polynomials in σij will be used.
Actually this is the basis for obtaining strain energy representations and it will be used here for
failure as well.  All approaches to be shown here are of the polynomial expansion type.  This



general method provides an organized approach on the problem.  Most other criteria appear to
simply be directly postulated forms that are then compared with data or expectations.

Express the possible failure criterion as the polynomial

Fiσ i + Fijσ iσ j + Fijkσ iσ jσk + − − − − − = 1 (1)

where the contracted tensor notation is used with the coefficients Fi, Fij, Fijk….to be determined
to give the best representation of relevant experimental data.  The form of Fi is that of a second
order tensor, as

Fiσ i =
~
F jkσ jk

Thus Fi has six independent components.  Similarly Fij is a fourth order tensor with 21
independent components.  All higher-order tensors follow the same general character.  The
polynomial expansion (1) is normally truncated at the second-degree terms.  Thus the failure
form (1) at the second degree level contains twenty seven individual, independent parameters.

Under plane stress conditions with σ3 = σ4 = σ5 = 0 then (1) is given by

F1σ1 + F2σ2 + F6σ6[ ] +
F11σ1

2 + F22σ2
2 + F66σ6

2 + 2F12σ1σ2 + 2F16σ1σ6 + 2F26σ2σ6⎡⎣ ⎤⎦ + − − − − − = 1
(2)

The plane stress form (2) involves nine independent parameters at the second-degree level.

Most interests are at the three dimensional level, and twenty-seven experiments to determine
properties is an almost unthinkable task.  Reductions in the numbers of parameters are
afforded by symmetry restrictions in particular cases, and by specific physical restrictions.

Orthotropy.  Consider the case of orthotropy and take the coordinate planes parallel to the
symmetry planes.  The term Fiσi is written out as

Fiσ i = F1σ1 + F2σ2 + F3σ3 + F4σ4 + F5σ5 + F6σ6

The shear stress terms involving σ4, σ5, and σ6 give a physically unacceptable effect due to the
sign of the shear stress, unless the related coefficients vanish, as

F4 = F5 = F6 = 0

This simplification would not be allowed if the material symmetry planes were not parallel to
the coordinate planes.  Now, in the second term of (1), for the coupling terms between normal
stress and shear stress to be independent of the sign of the shear stress, it again follows that



F14 = F15 = F16 = 0 ,  F24 = F25 = F26 = 0 ,  F34 = F35 = F36 = 0

Furthermore, the shear strengths are assumed to be uncoupled; thus to be independent of the
sign of the shear stress

F45 = F46 = F56 = 0

Using these forms in (1) it becomes

F1σ1 + F2σ2 + F3σ3( ) + F11σ1
2 + F22σ2

2 + F33σ3
2 + 2F12σ1σ2 + 2F23σ2σ3(

+2F13σ1σ3 + F44σ4
2 + F55σ5

2 + F66σ6
2 ) + − − − − − = 1

(3)

Thus orthotropy contains twelve parameters or constants at the second-degree level.

For plane stress we have by definition

σ3 = σ4 = σ5 = 0
leaving (3) as

F1σ1 + F2σ2( ) + F11σ1
2 + F22σ2

2 + 2F12σ1σ2 + F66σ6
2( ) + − − − − − = 1 (4)

Thus in this case Fi has two components and Fij has four. At the level of truncation shown in (4)
there are six constants to be determined.

Transverse Isotropy

The case of transverse isotropy is that usually taken for an aligned fiber composite material at
the macroscopic lamina level.  Transverse isotropy is a special case of orthotropy.  Take the
x2x3 plane to be the plane of symmetry.  Then from symmetry for (1)

F2 = F3  ,  F12 = F13  , F22 = F33  ,  F55 = F66

Also, the shear condition gives

F44 = 2 F22 − F23( )

These further restrictions on the orthotropic results reduce (3) to

F1σ1 + F2 σ2 + σ3( )⎡⎣ ⎤⎦ + F11σ1
2 + F22 σ2

2 + σ3
2( ) + 2F12 σ1σ2 + σ1σ3( )⎡⎣

+2F23σ2σ3 + 2 F22 − F23( )σ4
2 + F55 σ5

2 + σ6
2( )⎤⎦ + − − − − − = 1

(5)



There are now a total of seven material parameters to be determined at the level shown.  For a
plane stress condition the number of independent parameters is reduced to six, the same as
orthotropy under plane stress.

In the following, three specific failure criteria for the transversely isotropic fiber composite
case will be given.  All three use the polynomial expansion method already given.  The three
criteria and the associated numbers of parameters are:

Tsai-Wu 7 Parameters
Hashin 6 Parameters
Christensen 5 Parameters

These criteria will be stated in the chronological order of their development, spreading out over
about thirty years.

There are many theories with many more parameters than will be considered in the three
forms to be given.  Such theories will not be covered since they usually become curve fitting
exercises.  There are theories with fewer parameters than covered here but they don’t seem to
have enough range and texture to cover the many complex effects than can occur.  The
purpose in giving these three main stream theories rather than just one is to show the variety
of effects and interpretations that are possible.

The experimental information that may be available to evaluate the parameters in the failure
criteria are the following:

T11 and C11 Fiber direction uniaxial tensile and compressive strengths

T22 and C22 Transverse uniaxial tensile and compressive strengths

S12 and S23 Fiber direction and transverse shear strengths

All of these comprise one dimensional stress state experiments.  Any further testing
information that may be needed must come from multi-axial experiments, which have proven
to be difficult to obtain, at least on a routine basis.  It might be added that the transverse shear
strength, S23 involves a difficult experiment that is not usually reported.

In the following criteria, the polynomial expansion is always truncated at the second-degree
terms.  Using third degree terms has been examined, Tennyson et. al. [2], but has not proven
to be particularly useful.

Tsai-Wu Criterion

The Tsai-Wu [3] criterion follows directly from the polynomial expansion (5), with each
parameter requiring a separate experimental evaluation.  In direct notation and after some
consolidation of terms, the Tsai-Wu form for the safety domain becomes



1
T11

−
1
C11

⎛
⎝⎜

⎞
⎠⎟
σ11 +

1
T22

−
1
C22

⎛
⎝⎜

⎞
⎠⎟
σ22 + σ33( ) + σ11

2

T11C11

+
1

T22C22
σ22 + σ33( )2 + 2F12σ11 σ22 + σ33( )

+
1
S23

2 σ23
2 − σ22σ33( ) + 1

S12
2 σ12

2 + σ31
2( ) ≤ 1

(6)

The seven parameters are given by the six experimental results shown plus F12, which is called
an interaction parameter.  The latter must be evaluated from multi-axial data or often it is
estimated.  In the original form of the Tsai-Wu criterion and in (5) there is a second interaction
parameter, F23, but it has necessarily been eliminated here by the transverse shear strength,
S23, and the other strength properties.  In the third criterion, to be considered later, a no failure
condition under compressive hydrostatic stress is imposed.  If that same condition is imposed
here upon (6), it determines F12 to be

F12 =
1

4S23
2 −

1
T22C22

−
1

4T11C11
(6a)

All terms in (6) are fully interactive with each other, meaning all stress components are coupled
together in an interactive manner.  This is the most direct interpretation of the polynomial form
(5).  The following two methods give somewhat different interpretations of (5).  The Tsai-Wu
criterion is sometimes called the tensor polynomial criterion, but that terminology would be best
used only in referring to the generic type because all three criteria given here are variations of
the tensor polynomial type.  In the case of isotropy the Tsai-Wu criterion (6) and condition (6a)
admit reduction to the Mises criterion.

Hashin Criterion

The Hashin [4] criterion also begins with the second-degree polynomial expansion in (5).  The
failure modes are then decomposed into matrix controlled and fiber controlled groups,
depending upon which stress components act upon the failure planes, these planes being
taken parallel and perpendicular to the fiber direction, respectively.   Also, the interaction
parameter F12 in (5) is taken to vanish.  Next, each mode is further decomposed into tensile
controlled and compressive controlled forms, with several of the same terms appearing in
each.  This introduces four additional parameters, bringing the total parameter count to ten.
Finally, four separate assumptions or conditions are imposed, bringing the total parameter
count back to six.  The tensile and compressive type matrix modes of failure are differentiated
by the sign of the transverse direction mean normal stress.

The Hashin failure criterion is then given by:



Tensile Matrix Mode, σ22 + σ33( )  > 0

1
T22

2 σ22 + σ33( )2 + 1
S23

2 σ23
2 − σ22σ33( ) + 1

S12
2 σ12

2 + σ31
2( ) ≤ 1 (7a)

Compressive Matrix Mode, σ22 + σ33( )  < 0

1
C22

C22
2S23

⎛
⎝⎜

⎞
⎠⎟

2

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
σ22 + σ33( ) + 1

4S23
2 σ22 + σ33( )2

+
1
S23

2 σ23
2 − σ22σ33( ) + 1

S12
2 σ12

2 + σ31
2( ) ≤ 1

(7b)

Tensile Fiber Mode, σ11  >0

σ11
T11

⎛
⎝⎜

⎞
⎠⎟

2

+
1
S12

2 σ12
2 + σ31

2( ) ≤ 1 (7c)

Compressive Fiber Mode, σ11< 0

σ11
C11

⎛
⎝⎜

⎞
⎠⎟

2

≤ 1 (7d)

The two failure criteria, (6) and (7) although starting with the same polynomial terms in (5)
certainly take very different final forms.

Failure Considerations

The two criteria just given were developed about twenty-five and thirty-five years ago and both
are widely used.   The sentinal differences between these two forms suggests some basic
questions of relevance to failure criteria.  The most obvious questions are the following.

i) Is it necessary or advisable to decompose failure into fiber controlled versus matrix
controlled modes?

ii) If the failure is decomposed into fiber and matrix modes, is it then necessary or
advisable to further decompose these into tensile versus compressive modes?

and
iii) What is the minimum number of parameters that would reasonably be expected in

order to comprehensively quantify failure for fiber composites?



To pursue these questions, begin with the collection of terms that occur in the polynomial
expansion of second degree for transverse isotropy.  From (5) these seven terms can be
written in terms of the invariants as

σ11, σ ii ,  σ11
2 , σ ii

2 ,  σ11  σ ii ,  σ1i  σ1i,  σ ij  σ ij,     i,j=2,3 (8)

Next, these terms will be normalized by moduli, either E11, E22 or µ12 as appropriate to the
related stress components.  This gives the same seven terms but now in preferred non-
dimensional forms as

σ11

E11

,  σ ii

E22

,  σ11
2

E11
2 ,  σ ii

2

E22
2 ,  σ11

E11

 σ ii

E22

,  σ1iσ1i

µ12
2 ,  

σ ijσ ij

E22
2 ,     i,j=2,3 (9)

As a limiting case, now consider a fiber composite with infinitely stiff fibers.  This mathematical
abstraction is of special interest because it naturally brings out the matrix controlled failure
modes that remain active.  The corresponding terms in (9) with E11 → ∞ are then

0,  σ ii

E22

,  0, σ ii
2

E22
2 ,  0,  σ1iσ1i

µ12
2 ,  

σ ijσ ij

E22
2 ,     i,j=1,2 (10)

The combination of the remaining terms in (10) gives the matrix controlled failure mode as

a σ ii

E22

+ b σ ii
2

E22
2 + c σ1iσ1i

µ12
2 + d

σ ijσ ij

E22
2 = 1,     i,j=2,3 (11)

The moduli can be absorbed into the coefficients to give

aσ ii + bσ ii
2 + cσ1iσ1i,+dσ ijσ ij = 1    i,j=2,3 (12)

where a, b, c and d are parameters to be determined and different from the like symbols in
(11).  The form (12) applies not only to the infinitely stiff fiber limiting case, but also to the
contiguous range of very stiff fiber cases.

Now the complementary fiber controlled mode of failure will be found.  Start with the terms in
(9), but the matrix controlled terms in (9) must be eliminated, otherwise this second criterion
would just repeat the one already found when σ11  = 0.  Eliminating the terms in (11) from (9)
then leaves the fiber controlled criterion as

eσ11 + fσ11
2 + gσ11σ ii = 1    i=2,3 (13)

where the moduli have been absorbed into the parameters e, f and g.



This separation into fiber versus matrix modes of failure is necessary and unavoidable in the
infinitely stiff fiber case and it is physically consistent and compatible in the adjoining very stiff
fiber range.  The question then comes down to that of what constitutes a very stiff fiber
system?  There is no specific rule, but reasonable guidance would be that if the degree of
anisotropy is an order of magnitude or greater, then the decomposition into fiber and matrix
modes of failure is necessary, otherwise it is not necessary and not appropriate.  This gives
clear guidance on question i) above.  Both forms, decomposed or not decomposed, have
separate and distinct ranges of validity.  The result that the two failure modes must decouple
for highly anisotropic aligned fiber systems has a satisfying analogy with behavior at the next
larger scale of effects.  Specifically, for fiber composite laminates, the in-plane failure modes
decouple from the delamination failure modes, where again highly anisotropic effects
dominate.

Regarding questions ii) and iii) we turn to the case of isotropic materials.  In recent work
Christensen [1] showed that isotropic material failure can be characterized by just two
parameters for a wide range of materials types.  Two failure parameters is of the same number
as the number of elastic properties for isotropic materials.  This suggests that five or more
parameters probably are needed to characterize failure for transversely isotropic materials,
compared with its five elastic properties.  Furthermore, in the above noted work for isotropic
materials, it was found that there was no necessity or even advantage to decompose into
tensile versus compressive modes of failure.  The nature of a polynomial expansion up to
second degree automatically brings in quadratic forms with two roots that naturally fall into
tensile and compressive behaviors.  It would be difficult to see how to do the isotropic case
other than by this means.

Christensen Criterion

The third failure criterion, Christensen [5, 6], to be included here had the advantage (and
benefit) of coming after the first two.  In this sense, it complies with the failure considerations
just discussed.  The procedure starts with the polynomial expansion of second degree and for
very stiff, highly anisotropic fiber systems the failure form is decomposed into the matrix and
fiber controlled modes of failure (12) and (13).  These forms then contain seven parameters.
Next each of these is required to allow unlimited hydrostatic pressure without failure, which
then reduces the parameter count by two.  The resulting failure criterion is

Matrix Mode

1
T22

−
1
C22

⎛
⎝⎜

⎞
⎠⎟
σ22 + σ33( ) + 1

T22C22
σ22 − σ33( )2 + 4σ23

2⎡
⎣

⎤
⎦ +

σ12
2 + σ31

2( )
S12

2 ≤ 1 (14a)

and



Fiber Mode

1
T11

−
1
C11

⎛
⎝⎜

⎞
⎠⎟
σ11 +

σ11
2

T11C11
−
1
4

1
T11

+
1
C11

⎛
⎝⎜

⎞
⎠⎟

2

σ11 σ22 + σ33( ) ≤ 1 (14b)

There are five parameters or properties in (14).  The transverse shear stress failure property,
S23, is not involved here, it was in effect eliminated by requiring the independence to
hydrostatic pressure.  If σ22 and σ33 are small compared with σ11 then fiber mode (14b) just
becomes the maximum stress criterion in the fiber direction.  In contrast, the Tsai-Wu criterion
shows a much stronger interaction between fiber direction strength and transverse pressure
than does (14b), while the Hashin criterion shows no interaction at all between them.

Overview of Failure

The three failure criteria just given show the variety of physical effects which can or may occur.
These three approaches are interrelated, all being variations on the theme of a polynomial
expansion.  In terms of the number of parameters to be determined and the number of terms
that interact in the failure criteria, the third criterion is the simplest of the three.  In terms of
approach and methodology, the third criterion is intermediate between the other two.  All three
criteria are serious, well considered efforts, and their differences reflect the complexity of the
program to determine failure criteria.

The similarities of the three criteria are that they all show an asymmetry in uniaxially tensile
and compressive strengths, and they all show a sensitivity to mean normal stress.  Another
example of their differences in addition to the one already mentioned is that of the manner in
which fiber direction uniaxial stress σ11 interacts with fiber direction shear stress, σ12.  The Tsai-
Wu criterion shows a strong interaction between these two stress components.  The Hashin
criterion has them interacting when σ11 is tensile but not when it is compressive.  The
Christensen criterion states that the shear stress σ12 has a negligible effect on the fiber
direction strength, for very stiff fiber systems in which there is no rotation of the fiber direction.

There are many other theories of failure, for example a prominent one is that of Puck and
Schürmann [7] which is based upon the Coulomb-Mohr approach.  Probably there never will
be a single, universally agreed upon theory of failure for fiber composites.  There simply are
too many very different points of view, amply sustained by the inherent complexity of the
materials systems.  Despite this diversity of opinion there still can be reasonably high
standards and measures of quality in the effort to characterize failure for composites, but it
does come down to a matter of individual preference and judgment.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
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